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Abstract

Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. 

Controlling airborne dust prior to deposition in the return would make current rock dusting 

practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. 

National Institute for Occupational Safety and Health study is to determine the potential of open-

air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in 

diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a 

featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments 

were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat 

fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne 

float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The 

results indicate that the preferred spray nozzle should be operated at high fluid pressures to 

produce smaller droplets and move more air. These findings agree with past respirable dust control 

research, providing guidance on spray selection and spray array design in ongoing efforts to 

control airborne float dust over the entire longwall ventilated opening.

Introduction

Coal mining processes produce airborne dust that naturally deposits on the floor, roof and 

ribs of mine airways. These fine dust particles, termed float coal dust when smaller than 75 

µm in diameter, are deposited in the return entries of coal mines and can be re-entrained by 

pressure waves induced by methane-air explosions (Rice et al., 1911; Nagy, 1981; U.S. 

National Institute for Occupational Safety and Health (NIOSH), 2006). These particles are 

also those most likely to participate in coal-dust-fueled explosions, which can potentiate and 

propagate explosions resulting in extensive damage. In order to meet compliance 

requirements of at least 80 percent incombustible content in the composition of material 

deposited in mine entries (U.S. Mine Safety and Health Administration (MSHA), 2016), 

coal mines apply an inerting agent, specifically, rock dust (Harris et al., 2009). Should 
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methane be present in the mine atmosphere, the required fraction of incombustible content is 

further increased by 0.4 percent for each 0.1 percent methane. The removal of airborne float 

coal dust (AFCD) prior to deposition is an approach intended to make current rock dusting 

practices more effective by increasing the proportion of inert material to combustible 

material, resulting in a lower risk of coal-dust-fueled explosions.

The objective of the present research is to investigate the use of open-air water sprays to 

remove AFCD from a ventilating air stream. The term open-air, as used in this paper, 

describes an unconfined spray nozzle operating in free space, unbounded by any enclosure 

such as a tube, venturi or shroud. Water sprays are both effective and widely accepted as a 

method for controlling underground coal mine dust. In fact, water sprays are considered to 

be the most economical and technically feasible means of reducing dust concentrations in 

underground coal mines (Courtney and Cheng, 1977; Barker and Humphreys, 1996). Sprays 

are used in several ways to control dust in mining processes, including inhibiting dust 

formation, immobilizing dust to prevent it from becoming airborne, and capturing airborne 

dust (Cheng, 1973). Reductions in airborne dust concentrations have frequently been 

attributed to inertial impaction between water droplets and dust particles, forming larger 

agglomerates that quickly precipitate out of the airstream (McPherson, 1993). Inertial 

impaction activity is generally accepted as the major capture mechanism for airborne 

particles larger than 0.5 µm in diameter. It is this mechanism that is evaluated in this study.

Much of the previous research on water sprays in mining focused on the control and capture 

of respirable dust. With a median diameter of about 4 µm, respirable dust is much smaller 

than AFCD, which has a top diameter of 75 µm (American Conference of Governmental 

Industrial Hygienists, 2016). Tomb, Emmerling and Kellner (1972) attempted to 

parameterize the behavior of water sprays and their respirable dust capture capabilities in a 

ventilated tunnel. At an air speed of 0.5 m/s (100 fpm), the nozzle characteristics found to 

define the performance of a particular spray installation were nozzle selection, operating 

pressure, water flow rate, droplet velocity and mean droplet diameter. Capture efficiencies 

improved with increased pressures, water flow rates and droplet velocities, and diminished 

with larger droplet diameters. These relationships have since been confirmed by several 

researchers (Cheng, 1973; Courtney and Cheng, 1977; Courtney et al., 1980; Ruggieri et al., 

1983; Shroeder, Babbitt and Muldoon, 1986).

Previous open-air water spray studies have further investigated differences between hollow 

cone, full cone, flat fan and air atomizing spray nozzle designs. When tested in an enclosed 

volume, air atomized and hollow cone nozzles were found to remove more respirable coal 

dust per unit volume of water than full cone and flat fan nozzles (U.S. Bureau of Mines, 

1982; McCoy et al., 1985). Increasing pressures universally improved dust removal, which 

the researchers credited to increased droplet velocity and reduced droplet size.

While high-pressure sprays produce smaller droplets with higher velocities, high water 

pressure has been shown to potentially diminish dust capture when applied to unconfined 

dust clouds encountered in many mining environments. Shroeder, Babbitt and Muldoon 

(1986) found that as pressures increased above 689 kPa (100 psi), dust capture per unit 

volume of water diminished. Jayaraman, Schroeder and Kissell (1985) attributed this effect 
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to the inducement of localized air turbulence that moved the dust cloud rather than diluting it 

or increasing the rate of particle/water collisions.

Additional spray factors have been investigated for their impacts on respirable coal dust 

control. For example, Kost, duBreuil and Saltsman (1979) found that, independent of spray 

type selected, sprays oriented downstream in a 0.5-m/s (100-fpm) tunnel were 20 to 30 

percent more effective at controlling airborne dust than those oriented upstream. More recent 

investigations by NIOSH examined spray airflow inducement and its effect on respirable 

dust capture potential (Pollock and Organiscak, 2007). This effort found that open-air, or 

unconfined, sprays with high airflow inducement did not necessarily result in higher rates of 

airborne dust capture, though higher pressures globally produced higher droplet velocities 

and improved capture efficiencies.

While much is known about spray selection and properties as they relate to respirable dust 

capture, these relationships must be confirmed when applied to AFCD control. The present 

study evaluates the ability of single open-air sprays to reduce AFCD concentrations in a 

controlled, high-velocity ventilated opening. By varying the spray configuration, such as 

spray type, orientation and pressure, the optimal configuration may be identified to 

successfully deploy sprays in full-scale longwall applications. Additionally, relationships 

between dust capture and spray characteristics and configurations are investigated to 

determine if prior respirable dust results may be applied to airborne capture of AFCD. 

NIOSH intends to use these findings to develop a series of sprays to be installed near the 

tailgate of the longwall face to effectively reduce AFCD concentrations over the entire 

opening cross-section and reduce the deposition of float dust in the return airway. The 

benefits of this approach are that these systems can work within the existing water supply 

infrastructure and could work independently of current respirable dust-focused water spray 

systems.

Methods

Sprays tested

The sprays used in underground installations cover a wide range of designs and capabilities. 

For these tests, five types of sprays were investigated: (1) single fluid hollow cone, (2) single 

fluid full cone, (3) single fluid flat fan, (4) single fluid hydraulic atomizing, and (5) twin 

fluid air atomizing. A total of seven sprays (Spraying Systems, Wheaton, IL) were tested, 

with two each of the hollow cone and flat fan varieties. Wide and narrow spray patterns were 

selected for these two spray types to evaluate the possible effect of changes in spray angle on 

AFCD removal.

Figure 1 shows a schematic of the types of spray nozzles tested. Six of the included sprays 

had been tested previously by Pollock and Organiscak (2007) for respirable dust capture 

efficiency, airflow inducement and various spray droplet characteristics. Gemci et al. (2003) 

had measured the water droplet Sauter mean diameter (SMD) and mean velocity, V, for 

these same sprays using a Phase Doppler Particle Analyzer at two distances along the nozzle 

axis under the same operating parameters.
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Table 1 summarizes the spray performance values measured during these investigations. 

Although not evaluated previously, a hydraulic atomizing spray has been added to this 

current study because it is considered more technically feasible than air atomizing sprays for 

in-mine installation. The average fluid consumption for the conventional hydraulic sprays 

was 3.1 L/min (0.82 gpm) at 552 kPa (80 psi) and 4 L/min (1.06 gpm) at 1,103 kPa (160 

psi). Spray angles ranged from 21 to 88 degrees.

Dust tunnel configuration

Tests to evaluate the dust capture ability of seven open-air sprays were conducted at the 

NIOSH Mining Program facility in Pittsburgh, PA. The existing NIOSH full-scale longwall 

dust gallery was modified to route air through a featureless, nearly rectangular opening with 

height of 1.6 m (5.4 ft), width of 0.9 m (3.0 ft) and length of 19.0 m (62.5 ft). Each water 

spray was individually placed on the top surface, 7.3 m (24.0 ft) from the tunnel entrance on 

the centerline of the tunnel. This relative location is depicted in the schematic diagram in 

Fig. 2. Depending on the orientation tested, the sprays were angled at 45 degrees from 

horizontal along the length of the tunnel in either the upstream or downstream direction. 

Airflow through the tunnel was induced by a series of three centrifugal fans located on the 

exhaust side and controlled by adjustment of regulators to maintain a velocity of 3.6 m/s 

(700 fpm).

The establishment of an experimental AFCD concentration in the tunnel was achieved by 

continuous material release through a laboratory dust dispersion system. A vibrating screw 

feeder located outside of the tunnel supplied dust to a compressed air-powered venturi 

eductor connected to a length of rubber hose with internal diameter of 19 mm (0.7 in.). A 

fixed release point 0.5 m (1.5 ft) from the roof and 17.8 m (58.5 ft) upwind from the dust 

sampling location was established on the centerline of the tunnel interior, and alignment in 

the downwind direction was confirmed before each test. Dust was introduced at a rate of 50 

g/min (6.6 lb/h) ±4 percent with verification before and after each test segment. The feed 

material was coal dust from the Pocahontas 3 coal seam in West Virginia (Penn Keystone 

Coal Co., Claysburg, PA) that had been custom-ground and screened by Hadsell Chemical 

Processing (Waverly, OH) to a size of 100 percent smaller than 200-mesh, or 74 µm. The 

resulting dust had a volume mean diameter of 23.02 µm and median diameter of 20.47 µm, 

with 29 percent smaller than 10 µm.

Dust sampling

Dust concentrations were measured at the tunnel exit using gravimetric sampling techniques 

for AFCD. The development and evaluation of the AFCD sampler, which is based on the 

Institute of Occupational Medicine (IOM) sampler for inhalable dust, is described in Barone 

et al. (2016) and Janisko et al. (2015).The AFCD samplers used in this study (Fig. 3) were 

fitted with the appropriate isokinetic nozzles to approximately match the tunnel airspeed 

when the sampler was operated at 2 L/min. In this case, a 3.06-mm (0.12-in.) internal 

diameter nozzle directed upstream provided an inlet flow velocity of 4.6 m/s (899 fpm). 

During operation, dust-laden air was pulled through the isokinetic nozzle and a custom inlet 

adapter to be deposited on the surface of a preweighed, open-faced IOM glass fiber filter 
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(SKC Inc., Eighty Four, PA). Dust caps were placed on the isokinetic nozzles to prevent 

deposition of dust during nonsampling periods.

Prior to each sampling period, a stabilized AFCD concentration was established. Upon the 

start of sampling, the dust caps were removed and a vacuum pump began drawing air at a 

rate of 2 L/min through each sampler. Airflow through each sampling assembly was 

maintained using critical orifices calibrated to 2 L/min ±4 percent.

While operating continuously, three AFCD sampling units were moved across the entire 

tunnel opening by a planar motion assembly. Fifteen areas — three across and five down — 

were selected based on EPA Method 1, for stationary samples of 1 min each. After 1 min, 

the sampler was moved to the centerpoint of the next region, until samples were collected 

for all 15 locations. These sampling points are illustrated in Fig. 4. The entire sampling 

sequence was 17 min in duration, including time to move between each stationary point. 

Each test consisted of three sampling sequences: (1) dust only, (2) water spray only and (3) 

dust with water spray. Unique gravimetric filters were used for each sampling sequence. 

Following each test, filters were desiccated and placed in the environmentally controlled 

weighing laboratory at the NIOSH facility for 24 hours of conditioning. Weight gain for 

each filter and resulting dust concentration were determined by post-weighing.

Data analysis

Gravimetric dust concentrations were determined by dividing the accumulated mass by the 

total volume of air sampled. The concentrations measured by each sampler were averaged 

together to ascertain the dust concentration for each phase of the spray configuration test. 

Dust capture efficiencies were further calculated by dividing the difference in dust 

concentrations for the water and dust phase by the baseline dust-only concentration for each 

test: E = (C0 − C)/C0, where C0 is the initial concentration of AFCD and C is the 

concentration of AFCD after treatment by water spray. The sprays were operated at either 

552 kPa (80 psi) or 1,103 kPa (160 psi) for single-fluid sprays and 172 kPa (25 psi) or 345 

kPa (50 psi) for the twin-fluid spray. Sprays were oriented in either the upstream or 

downstream direction, angled 45 degrees down from the top surface. To measure the dust 

capture efficiency for the chosen test conditions, a randomized full factorial experimental 

design was adopted, with three replicates for each test condition. Data were evaluated using 

SPSS Statistics Version 19.0 (IBM, Armonk, NY). The level of significance used for all 

statistical tests was 0.05, 95 percent confidence interval, unless otherwise stated.

Results

Eighty-four tests were performed to measure the dust capture efficiency of seven different 

spray nozzles. The AFCD capture efficiencies for each spray, level of pressure, and nozzle 

orientation are shown in Fig. 5. The average AFCD capture efficiency for all sprays for all 

conditions was 19.6 percent. The full cone spray, FC59, exhibited the highest overall 

efficiency, 26.4 percent, across all conditions as well as the highest efficiency for any 

pressure and orientation combination: high pressure, upstream orientation, 40.1 percent. The 

wide-angled nozzles of both the hollow cone, HC81, and flat fan, FF50, varieties had 

similarly high overall capture efficiencies of 24.8 and 22.6 percent, respectively. The air 
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atomizing spray, AA21, was the least efficient, 12.8 percent, at high pressure, and the third 

least efficient, 8.3 percent, at low pressure, resulting in an overall lowest average 

performance of 13.4 percent capture efficiency. Higher pressures resulted in higher capture 

efficiencies in almost all situations. This can be seen for all cases except the air atomizing 

spray in Fig. 5, with the line for average high-pressure AFCD capture efficiency remaining 

above the line corresponding to average low-pressure capture efficiency.

Three-way factorial analysis of variance, or ANOVA, was conducted to compare the main 

effects of spray choice, pressure and orientation, and the interaction effects between spray 

choice, pressure and orientation on the observed AFCD capture efficiencies. The main effect 

for spray choice yielded an F ratio of 6.893, p = 0.000, indicating a significant difference in 

capture efficiency between spray types. The main effect for pressure produced a significant 

difference in capture efficiency, F = 57.189, p = 0.000, with higher pressures, leading to 

improved AFCD capture. Orientation was not statistically significant, F = 2.718, p = 0.105. 

There was a significant two-way interaction of spray type and pressure, F = 5.009, p = 

0.000, revealing that certain sprays were more effective when operated at high pressure than 

other sprays. A second significant two-way interaction was observed between spray type and 

orientation, F = 3.168, p = 0.010, indicating that certain sprays better removed AFCD from 

the airstream when operated in a particular direction.

A post-hoc Tukey honest significant difference, or HSD, test on the main effect for spray 

choice identified significant differences between FC59 and AA21, with F = 12.99, p = 

0.007; FC59 and HC33, with F = 10.58, p = 0.050; and HC81 and AA21, with F = 11.43, p 
= 0.026). These results suggest that spray choice, especially among the selected single-fluid 

sprays, may have little influence when attempting to remove airborne dust from a ventilation 

airstream. Other considerations in terms of spray geometry, coverage or system capacity 

may be more important to the effective implementation of unconfined sprays in practice.

Regression analysis was conducted on the experimental capture efficiency to determine 

possible significant pressure and orientation relationships for each spray. The influence of 

pressure and orientation was modeled for each spray nozzle type using stepwise linear 

regression with indicator variables (Olsson, 2002). The AFCD capture efficiency model took 

the form of the first-order linear response function:

where yi = regression model dust capture efficiency estimate; β0 = model constant; β1 = 

pressure coefficient; β2 = orientation coefficient; χ1 = 0 if low pressure and 1 if high 

pressure; χ2 = 0 if oriented downstream and 1 if oriented upstream; and ei = error term.

The calculated regression terms for each spray nozzle are listed in Table 2. AFCD capture 

efficiency could be accurately predicted for five of the tested sprays by including level of 

pressure and/or spray orientation. Only the model for the hydraulic atomizing spray nozzle, 

HA88, included both pressure and orientation terms at a 0.05 level of significance. The 

negative coefficient for this nozzle’s orientation indicates that the predicted capture 

efficiency is lower when oriented into the airflow. Prediction models for four of the sprays 
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included positive terms for pressure, indicating that increases in pressure resulted in 

improved capture efficiency. This trend is seen graphically in Fig. 5 for all sprays except air 

atomizing.

Pearson product-moment correlation coefficients were computed to assess the potential 

relationship between AFCD capture efficiency and spray pressure, orientation, fluid 

quantity, spray angle, droplet SMD, droplet velocity, induced airflow and spray power. The 

air atomizing spray was removed from this analysis because the droplet formation uses a 

twin-fluid mechanism and the performance characteristics tend to be vastly different from 

single-fluid hydraulic sprays. Similarly, the hydraulic atomizing spray was removed from 

some comparisons where characteristic data were unavailable.

The results for all correlations are presented in Table 3. There was significant positive 

correlation between AFCD capture efficiency and spray pressure, induced airflow and spray 

power. At the 0.10 level of significance, two additional correlations were identified. A 

negative correlation was observed between capture efficiency and droplet SMD at the 0.3-m 

(1-ft) distance. This relationship indicates that smaller droplets generally resulted in 

increased dust removal efficiency. A second correlation at the 0.10 level was found between 

water quantity and AFCD capture efficiency, where increases in water usage resulted in 

improved AFCD capture. No correlations were observed between AFCD capture efficiency 

and spray orientation, spray angle and droplet velocities. In general, the results suggest that 

sprays that are operated at higher pressure, use more water, produce smaller droplets and 

induce more airflow tend to remove more AFCD from the ventilation airstream.

Discussion

Many mines will be able to tolerate only a small stationary source of water on the longwall 

face. Therefore, when designing a full face spray installation, it will be necessary to 

maximize AFCD capture while minimizing water consumption. To identify the singular 

spray with the best capture potential at the lowest water consumption rate, the AFCD 

capture efficiencies measured in this study were normalized by water flow rate in liters per 

minute. This approach had been used in past studies to consider dust reductions per unit of 

water flow (McCoy et al., 1985). The capture efficiencies per spray water flow rate for the 

seven tested sprays are shown in Fig. 6. After making this adjustment, the hydraulic 

atomizing spray excelled at both low and high pressures, reducing AFCD concentrations by 

10.5 and 12.6 percent per unit water, respectively. These values compare favorably with the 

corresponding averages for all sprays of 6.1 and 7.2 percent per unit of water.

AFCD capture efficiencies were found to improve for increases in pressure, induced airflow, 

spray power and water flow rate, and for decreases in droplet diameter. These spray 

characteristic effects agree with those established through previous respirable dust research. 

However, this study did not observe a significant effect related to droplet velocity or 

orientation. Although orientation was not found to be a significant factor in AFCD capture, 

it should be noted that the air speed in these trials was seven times higher than that 

previously tested (Kost, duBreuil and Saltsman, 1979). The preferred spray choice was also 

not the same as in prior closed chamber tests for respirable dust removal (U.S. Bureau of 
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Mines, 1982; McCoy et al., 1985). In these current tests, the full cone nozzle produced the 

largest reductions and the air atomized nozzle was found to remove the least amount of dust. 

Even when considering capture efficiency per unit volume, the air atomizing nozzle did not 

perform as well as the hydraulic atomizing spray. It is possible that the high-speed 

ventilating air disrupted the air atomizing nozzle’s spray pattern and did not allow for water 

droplets to fully encompass the tunnel opening.

This study considered the laboratory capture of coal dust sized smaller than 75 µm in 

diameter. It is possible that different dust sizes and compositions found in actual 

underground mine environments may have an impact on the performance of these selected 

sprays. Additionally, based on the position of any spray system along the longwall face, 

larger dust particles may have deposited naturally, leaving only a smaller-sized dust fraction 

in the airstream.

The performance characteristics of the hydraulic atomizing spray have not been measured 

and were not included in the statistical investigation of significant correlations between 

AFCD capture efficiency and droplet diameter, droplet velocity, and induced airflow. 

Additionally, the air atomizing spray was not included in the correlation analysis due to its 

different droplet formation mechanism. It is possible that these two sprays would modify the 

analysis and result in the discovery or omission of additional relationships.

An important element in the success of a spray-based dust capture system would be the 

coverage over the ventilated opening. In this investigation, droplet coverage was not 

measured. It has been shown that in order for droplets to reach distant areas from their 

release point, spray nozzles must produce high-momentum droplets, with both large droplet 

diameters and high velocities (Swanson, Agasty and Langefeld, 2012). While this study 

found no evidence that higher velocities lead to higher capture efficiencies, larger droplets 

are shown to generally decrease capture potential. A final system design should strive to 

place the selected sprays close to the target location to improve particle interception.

The in-mine operation of these tested sprays was not investigated in this study. Water quality 

requirements and filtration needs to minimize plugging of the smaller-orifice nozzles must 

be considered in the design of functional spray systems for longwall installation. It is 

possible that larger-orifice spray nozzles would be required to maintain system performance, 

despite a potential decrease in droplet diameter and resulting capture efficiency. This may 

not be an effective solution because particles larger than even the largest practical nozzle 

orifice have been found in mine water supplies (Courtney and Cheng, 1977). Twin-fluid 

sprays may also not be appropriate for use underground, because an auxiliary high-pressure 

air source is required for their operation. The relatively low performance of the air atomizing 

spray in a high-velocity airstream makes this additional demand likely unnecessary to 

achieve adequate AFCD control.

Conclusions

Accumulations of float coal dust present a hazard in underground coal mines that must be 

regularly addressed through the application of inerting materials. Reductions in AFCD 
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concentrations would lessen the danger of combustible material deposition in return 

ventilation airways and improve the effectiveness of inertization efforts. One approach used 

in prior airborne dust control efforts has been the application of water sprays to capture a 

portion of the respirable dust contained in the mine atmosphere. This study evaluated the 

ability of these same sprays to reduce concentrations of float-dust-sized coal particles.

Gravimetric samples show that airborne float coal dust capture efficiencies averaged 19.6 

percent for all sprays under all conditions, with a range of 8.3 to 40.1 percent. The full cone 

spray exhibited the highest average efficiency, 26.4 percent, across all conditions as well as 

the highest efficiency for any pressure and orientation combination: high pressure, upstream 

orientation, 40.1 percent. When accounting for water consumption, hydraulic atomizing 

sprays demonstrated the highest dust capture potential. Orientation had a significant 

influence for only two spray types, with increased capture efficiencies for air atomizing 

sprays and lower efficiencies for hydraulic atomizing sprays when directed into the 

airstream. Increases in spray nozzle fluid pressure increased airborne dust capture for four of 

the six hydraulic sprays tested. Significant positive correlations between AFCD capture 

efficiency and induced airflow, spray power and water consumption were observed. 

Airborne dust capture also increased with decreasing droplet diameter. Similar relationships 

were not statistically significant for mean droplet velocity or spray angle.

As many of the findings are consistent with previous respirable dust control work, these tests 

have demonstrated that similar dust capture principles and mechanisms may be in effect for 

both respirable coal dust and AFCD. It is anticipated that future AFCD efforts may use the 

large amount of respirable dust literature for guidance in developing functional and effective 

controls to reduce the burden of AFCD accumulations in the return airways of coal mine 

operations. Based upon the information of spray nozzle characteristics and capture 

performance obtained in this study, NIOSH is continuing to develop full-scale spray systems 

to be tested for AFCD control in longwall face environments.
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Figure 1. 
Spray nozzles tested. Clockwise from top left: full cone, single fluid atomizing, twin fluid 

atomizing, flat fan and hollow cone (Colinet et al., 2010).
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Figure 2. 
Schematic diagram of tunnel, showing dust introduction, spray nozzle and sampling 

apparatus.
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Figure 3. 
NIOSH AFCD sampler adapted from IOM sampler with isokinetic nozzle (blue) and custom 

inlet adapter (black).
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Figure 4. 
Fifteen points selected for stationary sampling of airborne dust.
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Figure 5. 
AFCD capture efficiency for seven tested sprays.
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Figure 6. 
AFCD capture efficiency per water flow rate for seven tested sprays.
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Table 2

Summary of stepwise regression analysis for spray parameters predicting AFCD capture efficiency (NS = not 

statistically significant, NA = not applicable).

Spray
name

Constant Pressure
coefficient

Orientation
coefficient

Adjusted
R2

FC59 15.933 20.917 NS 0.776

AA21 8.983 NS 8.833 0.570

HA88 18.067 8.367 −9.933 0.618

FF25 10.633 12.967 NS 0.489

FF50 15.717 13.767 NS 0.653

HC33 NS NS NS NA

HC81 NS NS NS NA
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Table 3

AFCD capture efficiency and spray characteristics: Pearson correlations (numbers in bold = statistically 

significant at the 0.05 level, numbers in italic = statistically significant at the 0.10 level).

Correlation tested Correlation

Efficiency and spray pressure (kPa) 0.657

Efficiency and orientation 0.218

Efficiency and fluid quantity (m3/s) 0.402

Efficiency and spray angle (°) 0.298

Efficiency and SMD (at 0.3 m, µm) −0.407

Efficiency and SMD (at 0.6m, µm) −0.340

Efficiency and velocity (at 0.3m, m/s) −0.010

Efficiency and velocity (at 0.6m, m/s) 0.014

Efficiency and induced airflow (m3/s) 0.532

Efficiency and spray power (W) 0.622
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